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Key Points 

 Only a set of complementary policies can address traffic 
externalities. There is no silver bullet. 

 The prevailing set of policies places too much emphasis on 
fuel efficiency and too little on curbing mileage. 

 Fuel taxes and road pricing strongly affect driving. 

 Progressive tax credits at the point of purchase can help 
overcome barriers in electric vehicle adoption. 

 Recycling revenues from fuel and road pricing for public 
transport multiplies the impact of policies.   

1. Externalities: The unintended side effects of road traffic 

While undeniably beneficial for society, road transportation 
also has significant social costs that are ignored by private users 
when deciding if, where, how, and at what time to travel. 
Policymakers are mainly concerned about four sizeable 
externalities from road transportation: 

1. Climate change.  Road transportation causes carbon 
dioxide (CO₂) emissions. In Europe, transport is 
responsible for 26% of total CO₂, two thirds of which 
stem from cars and vans [1]. The social costs of carbon 
are borne globally. 

2. Road congestion. Each vehicle on the road contributes 
to congestion and slows traffic. In heavy traffic, 
additional vehicles can reduce throughput. The social 
costs of congestion consist of increased travel time 
and decreased reliability of travel times.  

3. Local air pollution. Fuel combustion results in 
emissions of carbon monoxide (CO), nitrogen oxides 
(NOₓ), and particulate matter (PM). Wheel-to-road 
contact, as well as brake, tire, and gear wear contri-
bute to PM emissions. There is ample evidence that 
these pollutants cause harm to public health [2] [3] [4] 
[5] [6], even at low levels [7].  

4. Accidents. Each vehicle on the road increases the 
probability of accidents. The social costs of this 
externality include loss of life, property damages and 
physical injuries resulting in medical expenditures. 

Externalities reinforce another, e.g. congestion may increase 
air pollution and CO₂ emissions [2] [5] because stop-and-go 
traffic reduces fuel efficiency and increases travel times [8].  

Here, we focus on the implications of these four externalities 
and identify effective policy instruments to address them. First-
best solutions (Section 2) are compared to real-world current 
(Section 3) and emerging (Section 4) second-best policies. We 
explain their mechanisms, identify their goals and summarize 
empirical evidence. Other externalities such as noise, urban 
sprawl, road damages, or oil dependency [9] are also important 
but beyond the scope of this policy brief. We mainly focus on 
light-duty vehicles in an urban context.  

 

2. Benchmark: First-best policies 

The CO₂ emissions of a liter of fuel are fixed. Thus, a fuel tax is 
the optimal instrument to curb CO₂ emissions. However, it is a 
first-best policy choice only if consumers are far-sighted and 
accurately account for future fuel savings from improved fuel 
efficiency [10]. However, consumers are often myopic, and, 
hence, systematically underestimate fuel savings. Therefore, 
fuel-economy or CO₂ standards and vehicle taxes are necessary 
complements to fuel taxes for a first best policy mix. This set 
represents the most prominent real-world policies (Section 3). 

Standards increase fuel efficiency by regulating the supply of 
vehicles and preventing myopic consumers from buying ineffi-
cient new vehicles. On the demand side, vehicle taxes penalize 
inefficiency and counteract short-sightedness by making 
efficient vehicles more attractive [10]. There is no clear 
consensus on the extent of myopia but most studies find at 
least a modest undervaluation of fuel savings [11] [12] [13] [14].  

Fuel taxes are an efficient policy measure because fuel 
consumption perfectly correlates with CO₂ emissions. Because 
the relationships between fuel consumption, local pollution, 



 

congestion, and accident risk varies with vehicle characteristics, 
location, and time [15] [16] [17], addressing these externalities 
is more challenging. Viable policy options include road pricing 
and banning high-polluting vehicles (Section 4). 

3. The three traditional policy pillars 

3.1 Fuel taxes 

Fuel taxes raise the price of fuel at the pump. 

New vehicles become more efficient and shrink in size. Inefficient 
old vehicles are scrapped. 

There is robust evidence that higher fuel prices increase the 
fuel efficiency of the vehicle fleet via two channels. First, 
consumers buy more efficient vehicles [18] [19]. Second, they 
choose smaller and lighter ones [10]. Fuel taxes are particularly 
efficient with frequent drivers [14] and reduce the sales of 
trucks and SUVs [20]. Third, fuel taxes accelerate the scrappage 
of older, less fuel-efficient vehicles while extending the lifetime 
of newer and more efficient ones [21] [22]. Changes in tax have 
a smaller effect on fuel economy in Europe than in the US [23]. 

Consumers drive less. 

Fuel taxes decrease the distance travelled by car [10]. Empirical 
US-studies [24] [25] yield a fuel price elasticity of distance 
traveled between -0.10 and -0.30. Thus, a 10% increase in fuel 
prices reduces km driven by 1-3%. Estimates for Europe [26] 
[27] yield stronger elasticities between -0.30 and-0.45 which 
can be explained by higher availability of public transportation 
in this region [27] [28] [29]. Diesel car drivers are particularly 
responsive to fuel taxes [14] [27] [30]. Fuel taxes reduce 
pollution, congestion, and accidents proportionally to the 
decline in travel distance [10]. A fuel tax, however, can only 
recover a fraction of the incurred efficiency losses from these 
externalities [15]. Real fuel taxes in the EU-15 for gasoline and 
diesel remain constant since 2000 [31], leaving their full 
potential to curb externalities untapped.  

3.2 Standards 

Standards prescribe the minimum efficiency new vehicle fleets 
must achieve in terms of mean fuel consumption or emissions. 

New cars get more efficient. Life of old inefficient cars extends. 

Similar to fuel taxes, standards directly shift demand towards 
greater fuel economy [32] [33], even if consumers undervalue 
efficiency savings [10]. In the EU, the introduction of standards 
coincides with a 14% drop in CO2 emissions. However, only 30% 
of the improvements in official emission ratings manifest on the 
road [33]. While fuel taxes incentivize scrapping, standards do 
not affect the operating costs of used vehicles. Since inefficient 
old and new vehicles are substitutes, the resale value and 
lifetime of used ones increases. This “Gruenspecht effect” 
reduces expected fuel savings by 13-16% [21]. Incentive 
programs for the scrapping of old vehicles may mitigate this 
adverse effect [34] [35] [36]. As standards ignore differences in 
vehicle lifetime mileage, they recover only 25-33% of the 
welfare loss from externalities [37]. 

Size-based standards often subsidize vehicle size. 

Current standards in the EU, the US or Japan are attribute-
based, linking efficiency targets to a vehicle’s size or weight. 
Heavier vehicles face less stringent targets than lighter ones. 
This allows compliance burdens to spread more equally across 
manufacturers but may incentivize upsizing [38]. By accounting 
for historical vehicle dimensions at the manufacturer-level, 
European standards neutralize up-sizing incentives and instead 
accelerated technology, e.g. automatic engine shut-offs during 
stops [33]. 

Rebound effect: When driving costs fall, consumers drive more. 

Efficiency standards reduce fuel consumption. Thus, the cost of 
driving declines and consumers are encouraged to drive more, 
which partly eliminates the initial gains from standards. A large 
body of literature estimates that this rebound effect [9] [10] 
[39] [40] reduces 5-30% of potential energy savings from effici-
ency improvements [41]. Note that the rebound and the 
Gruenspecht effect are additive. With the exception of CO2 per 
km, standards at best fail to mitigate externalities and at worst 
exacerbate those scaling with driving [10]. 

3.3 Vehicle taxes 

Vehicle taxes include purchase, registration & ownership taxes. 

Vehicle taxes can address consumer myopia. 

Empirical evidence confirms that vehicle taxes affect the 
composition of new vehicle sales in spite of consumer myopia 
[14]. Most EU countries impose registration or annual vehicle 
taxes that depend on CO2 emissions. There is evidence that 
CO₂-based registration taxes in the EU reduce the average CO₂ 
emission intensity of new vehicles by 1.3% [42]. Registration 
taxes are more effective than annual taxes [43] [44] [45]. 
However, with more fuel efficient vehicles, drivers are likely to 
travel more (rebound effect) [44]. 

Lump sum tax credits support clean vehicle adoption. 

Tax incentives must be salient to change behavior [46] [47]: 
Consumers respond more keenly to rebates and sales tax 
exemptions at the time of sale compared to complex income 
tax incentives, which have to be applied for and accrue later 
[43] [48]. Exploiting this consumer behavior may significantly 
accelerate the diffusion of new technologies such as electric 
vehicles (EV) [49] [50]. Evidence from the US suggests that a 
sales tax waiver may increase hybrid EV sales by 45% compared 
to a 3-5% increase from income tax credits of a similar 
magnitude [43]. However, tax rebate programs subsidize those 
who would have bought an EV anyway, which reduces the 
policy’s cost effectiveness [51] [52]. This windfall effect is most 
prevalent in high-income households, who often have higher 
preferences for EVs. Lower-income consumers, however, only 
demand EVs in the presence of rebates. Progressive tax rebates 
granting higher credits to lower-income consumers may 
increase the number of additional EVs sold per Euro of rebate 
[48]. A combination of fuel tax increases and vehicle tax 
incentives is the most effective support for EV adoption [19]. 



 

Effect of feebates on CO2 emissions is ambiguous. 

Recently, feebates have received particular attention. This 
policy grants tax rebates to buyers of fuel-efficient vehicles, 
while imposing fees on buyers of inefficient ones. This policy 
may promote low-emission vehicles without public spending. 
Research on the French “Bonus/Malus” feebate, however, 
suggests that real-world feebates emphasize rebates over fees 
[44]. As a result, the French policy not only shifts demand 
towards low-emission vehicles but can also involve a strong 
increase in total vehicle sales and, ultimately, CO₂ emissions. A 
simulation of hypothetical German feebates implies that 
welfare gains require total fees to exceed total rebates [53]. 

4. Emerging policies 

4.1 Road pricing 

Road pricing is a first-best policy to reduce congestion [16] [54]. 
The introduction of charges, that reflect the cost imposed on 
the system by individual drivers through lowering the speed of 
others, encourages drivers to use less congested roads, to not 
travel during rush hour, or to switch to other modes of travel 
such as public transit and ride sharing [55]. Electricity networks 
face similar congestion problems as road networks and are 
benefitting from congestion pricing for over a decade now [56].  

Optimal design and current use. 

A first-best road pricing policy charges drivers according to the 
local level of congestion at the time of travel. As this often 
proves infeasible, cities such as London, Milan, and Stockholm 
apply second-best solutions in the form of cordon tolls. These 
are time-invariant charges for driving within or into a defined 
area. In San Diego and Los Angeles, road access tolls vary with 
road conditions, while in Singapore and on San Francisco’s Bay 
Bridge, tolls vary by time of day. Road pricing systems in New 
Zealand and Oregon rely on distance-based charges that are 
independent of location. Finally, road use for trucks is priced, 
inter alia, in Germany and Switzerland. Notably, parking fees 
may also disperse demand over time, reducing congestion [94]. 

Tolls effectively manage mode choice and time of travel. 

There is strong evidence for the effectiveness of cordon tolls. 
In London, Stockholm, and Milan road traffic is 12-22% lower 
since the introduction of tolls, while the number of public 
transit trips is 4.5-30% higher [57]. Bus ridership is amplified 
even further as busses travel at higher speeds on less 
congested roads [58] [59].  The cordon tolls reduces congestion 
by shifting road demand to unpriced areas or times [60]. The 
effectiveness of tolls depends on the available level and quality 
of public transport [61]. While cordon tolls offer considerable 
efficiency gains [62] [63], more sophisticated dynamic pricing 
schemes accommodating peak times and local conditions are 
key to fully optimize road use [61] [64] [65].  

Value pricing schemes target selected lanes. Users with high 
time costs have the opportunity to use less congested lanes for 
a fee. This option enhances efficiency if time preferences vary 
across drivers but it is also prone to displacing traffic to less 
congested roads instead of reducing it [64]. Empirically, the 
additional efficiency gains remain modest [55] [66] but it is 
possible to offset negative distributional effects [67] [68]. 
Studies of mileage taxes are scarce. The Swiss mileage tax for 
trucks reduces truck traffic by 4-6% in favor of rail [69]. In 
contrast, evidence for the German mileage truck toll on federal 
highways suggests a diversion of traffic to toll free roads [69]. 

Tolls reduce congestion, accidents, and pollution effectively. 

Analyses for London, Stockholm, and Milan indicate that road 
pricing decreases congestion delays by 30-50%, accidents by 2- 
21% and vehicle emissions by 9-19% [57]. Several empirical 
studies also report significant air pollution reductions and 
health benefits caused by road charges. For instance, air 
pollution is 5-15% lower in the regulated area in Stockholm and 
there are significant reductions in childhood asthma incidents 
[7]. The 6-7% decrease in air pollution in Milan raises welfare 
by approximately $3B annually [60], while a temporary 
suspension of tolls for eight days in China may increase air 
pollution by 20% and health costs by at least $15M. [70]. 
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Road pricing is a source of revenue. 

It is possible to redistribute the revenues from road pricing [71], 
but targeting transfers is difficult [72]. Earmarking revenues for 
public transport is crucial for securing public support [58]. Road 
pricing may alleviate the funding gap in fuel tax revenues due 
to greater fuel economy and EV adoption.  

4.2 Driving bans 

Driving bans restrict car use at certain times or places. They aim 
to reduce air pollution and congestion. 

Low emission zones reduce pollution. 

Low emission zones (LEZs) limit access to vehicles that meet 
pollution standards. European cities adopt LEZs to reduce PM 
emissions and empirical evidence for Germany confirms 
reductions between 4% and 9% [73] [74]. Proximity to a LEZ 
makes consumers more likely to own a low-emission vehicle. 
The forced substitution away from old dirty cars may decrease 
the magnitude of the Gruenspecht effect. To secure access to 
LEZs, the number of commercially owned low-emission vehicles 
in Germany is up by 88% [73]. Yet, the reduction in air pollution 
has not conferred improvements in infant health [74]. 

Impact of plate-based driving bans differs across cities. 

Some driving bans restrict the use of private vehicles to certain 
days based on license plate digits. Their effectiveness depends 
on the local context. Early evidence from major Latin American 
cities demonstrates ineffectiveness at reducing pollution and 
congestion [75] [76] [77]. By buying high-polluting, second 
vehicles for different license plates, drivers in Mexico City 
circumvent bans. Overall, the regulation unintentionally 
increases the size of the vehicle fleet and its emission intensity 
[75]. In contrast, similar driving bans in Beijing [78] [79] and 
Quito [80] reduce air pollution and congestion. In Beijing, air 
pollution is 21% lower and the analysis does not imply a shift 
towards driving at unregulated times [78]. The combination of 
high levels of compliance with high costs of additional vehicle 
ownership explains this success. 

4.3 Public transport subsidies 

Subsidizing public transport lowers its cost relative to private 
transport. It is the key for modal shifts.  

Large ridership response to public transport service extension. 

Empirical studies confirm that expanding public transportation 
infrastructure increases public ridership. Doubling the size of a 
metro network increases ridership by 60-70% [81]. Most new 
ridership is due to modal switches. The subway network 
extension in Copenhagen also reduces vehicle ownership by 2-
3% [82]. Bus lanes and rapid transits (BRT) are effective and 
low-cost ways to improve service levels [59] [83].  

Public transport is an important supplement to other policies. 

Public transport availability increases the effectiveness of fuel 
taxes and road pricing to curb driving [27] [60] [61]. As low-
income households often use public transport, subsidizing it 
redistributes income [59]. Research generally supports the 
efficiency of the current level of subsidies and the example of 
London shows that subsidies in excess of 50% of fares improve 
welfare [84]. Yet, their benefits may decline in the presence of 
other policies such as congestion pricing [59]. 

Public transport can curb externalities from vehicles. 

New subway systems may reduce air pollution by 4-15% [85] 
[86]. Public transit strikes in Germany provide a counter-factual 
and temporarily increase PM pollution by 14% and hospital 
admissions for respiratory diseases in children by 11% [87]. 
More frequent rail services in Germany lower concentrations of 
CO and NOₓ [88] but the literature also highlights the 
importance of context. Given the structure of cities across the 
US and Canada, public transit may lower air quality because the 
degree of substitution from vehicles to public transport is small 
[89] [90] [91]. The effect of public transport on congestion is 
substantial. Its absence increases average highway delays by 
47% in Los Angeles [92], public transit strikes in Germany 
increase total vehicle hours by 11-13% [87] and evidence from 
Rotterdam values the congestion relief at 80% of the total 
public transit subsidy [93]. 
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